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FOREWORD 

The work described in this report was carried out under 

Contract NAS 1-3778 with the National Aeronautics and Space 

Administration. 

This is a revision of the original report, which was issued in 

August 1964. 
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SUMMARY 

(Recent investigations by Stein and by Fischer on the influence of edge conditions on 

the criticaLload*of cylindrical shells are here extended to cover six additional com- 

binations of boundary conditions.   The results show that drastic reductions of the 

critical load for cylinders with lateral support of the edges are obtained only if the 

edges are free in the tangential direction.    For other boundary conditions, this reduc- 

tion is never more than about 20 percent.   Consequently, the results of this investiga- 

tion alone cannot explain the well-known discrepancy between theory and test data. 

However, the importance of the choice of boundary conditions for practical analysis is 

clearly demonstrated.Vi } _    ■'".,■     u    J        , !..-<■■■■      "frrlr 
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NOTATION 

A.., A0             integration constants; see Eqs. (19) and (20) 

D Et3/[12(1-^2)] 

E Young's modulus 

F stress function; see Eq. (22) 

F value of  F at x = xm m m 

L shell length 

M total number of discrete points 

N compressive axial load per unit width 

N N/(2y) 

N , N , N       axial, circumferential, and shear forces per unit width 
x' y'    xy 

W lateral displacement; see Eq. (22) 

W value of W at x = xm m m 

Z L2(l - >/2)1/2/(rt) 

a, k(l+N)l/2 ul 

l2 
a0 k(l-N)l/2 

stress function 

f     f parts of stress function, prebuckling and incremental 

h distance between neighboring discrete points 

<2rf1/2 

n number of waves in circumferential direction 

p internal pressure 

IX 



p (pr)/(Et) 

r shell radius 

t shell thickness 

u, v, w axial, circumferential, and lateral displacements 

wn, w. parts of lateral displacement, prebuckling and incremental 

x, y axial and circumferential coordinates 

x value of axial coordinate at discrete point 
m 

ym see Eq.  (28) 

a x (a1L)/(2r) 

a2 (a2L)/(2r) 

e , e , y          axial, circumferential, and shear strain 
x' y'  'xy 

(t/r)/[12(l - ^2)]1/2 
y 

v Poisson's ratio 

orOT, critical axial stress 

o-_ classical value of  CTCR 

4 4/4 4/22       4,4 
V 9 /9x   + 29 /9x 9y   + 9 /3y 

When subscripts  x  and  y  follow a comma, they indicate partial differentiation of the 

principal variable with respect to  x  or  y .   Primes indicate total derivatives with 

respect to  x . 

x 



Section 1 

INTRODUCTION 

Serious disagreement between the results of classical theory and experiments on the 

buckling of axially compressed cylindrical shells has long been known to exist.   Despite 

considerable effort, this problem is still not completely understood.   New light was 

thrown on the matter in the recent investigation by Stein reported in Refs. 1 and 2. 

In that analysis, the deformations and stresses induced by edge support were for the 

first time rigorously taken into account.   It was shown that previous inconsistent 

assumptions in the classical theory with regard to boundary conditions in the prebuckling 

state can significantly affect the theoretical buckling load. 

The analysis of Ref. 1 is limited to one specific set of simple-support boundary con- 

ditions.   Fischer, in Ref. 3, later considered the same problem but used different 

in-plane boundary conditions.   The results of the two analyses differ significantly, and 

it appeared desirable that a more complete investigation be undertaken to establish the 

effect of edge conditions on the classical buckling load for axially compressed cylindrical 

shells.   Such an analysis is presented here and includes cylinders with clamped as 

well as simply supported edges.   Eight different sets of boundary conditions are con- 

sidered, and the approach to the problem is largely the same as in Ref. 1.   The pre- 

buckling displacements are obtained through rigorous solution of the applicable dif- 

ferential equations.   As incremental displacements are assumed to be infinitesimal, 

the buckling equations are linear but have variable coefficients.   Solutions to these are 

obtained by use of a finite difference technique. 

It was pointed out by Koiter (Ref. 4) that the classical solution of the buckling problem 

for axially compressed cylinders is based on the boundary conditions used by Fischer, 

and that Stein's condition of zero tangential edge force may lead to a reduced critical 

load even if a membrane solution is used for prebuckling displacements.   This was 



shown to be the case by Ohira (Ref. 5) and by Hoff and Rehfield (Ref. 6).   Therefore, 

the present analysis includes, for comparison, solutions for the case in which effects 

of edge restrain on prebuckling configurations have been omitted.   This case will be 

referred to as the membrane prebuckling solution. 



Section 2 

BASIC EQUATIONS 

As in Ref. 1, Donnell-type equations are used in the analysis.    In their nonlinear 

form the three equilibrium equations are 

N        + N =   0 
x,x        xy,y 

N        + N =   0 
y.y      xy,x 

(1) 

DVw + N/r-(Nw        +Nw        +2Nw      )-p   =   0 
y        v x  ,xx       y  ,yy        xy  ,xy7 

The corresponding relations between stresses, strains, and displacements are 

Nx  =   [Et/(1 - v  )]   (ex + vey) 

Ny  =   [Et/(1 - v* )]   (€y + vex) (2) 

N      =   [Et/2(1 + v)\ y 
xy v '      xy 

e    =  u      + 1/2 w 
x ,x ,x 

6y   =   V,y  +  W/r+   ^W.y (3) 

y      =u     +v     +ww 'xy ,y        ,x ,x   ,y 



The first two of the equilibrium equations are identically satisfied if a stress function, 

f , is introduced such that 

N     =  f ;N=f ;   N       =   - f (4) x        ,yy        y        ,xx        xy ,xy w 

By use of Eqs.  (4), the third equilibrium equation can now be written 

DV4w + f     /r - (f      w       + f      w       - 2f      w      ) - p  =  0        (5) ,xx' v ,yy   ,xx       ,xx   ,yy ,xy   ,xy'     * v 

Through elimination of u and v  in Eqs. (2) and (3), a compatibility equation can be 

derived: 

(1/Et) V4f - w      /r - w2      + w      w =0 (6) v ' ,xx' ,xy ,xx    ,yy 

Equations (5) and (6) are two simultaneous differential equations in the two unknown 

variables   f  and  w.   Together with an adequate set of boundary conditions, they 

govern the behavior of the shell.   A total of eight boundary conditions - four at each 

edge of the cylinder - is required.   As the displacements are expected to be sym- 

metrical about the midpoint of the shell, it is also possible to use a set of four sym- 

metry conditions together with four conditions at the edge of the shell. 

The axial coordinate is assumed to be zero at the midpoint and consequently 

at x = = 0 :   w .x =   0 

w ,xxx =  0 

f ,x =   0 

f ,xxx =   0 

(7) 



The shell is assumed to be supported in the radial direction at the edge.   Therefore, 

at   x  =  L/2:   w  =  0 (8) 

Three additional conditions are needed and will be obtained by selection of one of each 

of the following three pairs: 

at    x   =  L/2:   w v  =  0      or      w YY   =  0 
, X , XX 

u  =  0      or N    =  0 (9) 
x 

v  =  0      or        N      =0 
xy 

Evidently, eight different combinations are possible and these, in combination with 

Eqs.  (7) and (8), form eight complete sets of boundary conditions.   All of these sets 

will be considered in the analysis. 

For shorter writing, the different combinations will be referred to as follows: 

Case SI      when      w        =0,     u  =  0 ,       v   =  0 
I A-X. 

52 w =   0 ,   N     =   0  ,       v   =  0 
,xx '      x 

53 wjxx   =   0  ,      u  =   0  ,   Nxy   =   0 

54 wjxx  =   0  ,   Nx   =   0 ,   Nxy   =   0 

Cl w =   0  ,      u  =   0  ,       v=0 
>x 

C2 w =   0 ,   N    =   0  ,       v   =   0 
j X X 

C3 w =   0  ,      u  =   0  ,   N       =   0 

C4 wjx     =   0  ,   Nx   =   0  ,   Nxy   =   0 



Section 3 

PREBUCKLING DISPLACEMENTS 

Displacements and stresses will be composed such that 

w  = wQ + w. 

f  =  f0 + fl 

(10) 

where subscript  0  identifies the conditions at impending buckling and hence subscript 

1   identifies incremental quantities. 

At impending buckling the deformations are axially symmetrical and therefore the 

equation of equilibrium can be written 

Dw„ + fA      /r - f„      w„        - p  =  0 (11) 
O.xxxx       O.xx' O.yy   0,xx 

If the applied compressive axial load is denoted by  N , 

f. =   - N 
o.yy 

f0,xx  =  EtW0/r " "N 

Substitution of Eqs.  (12) into Eqs.  (11) yields 

(12) 

Dwn + Nwn w + Etwn/r
2 - (vN/r + p)   =  0 (13) 

O.xxxx O.xx 0 



The solution to this equation can be written in the form 

=  r(2KyN + p)(l + A.  sin SL-.X sinh a2x + Ag cos a^^x cosh agx)     (14) w. 

where 

a.      =    k(l + N)1/2 

a2    =    k(l - N)l/2 

k      =    (2T)"1/2 

r 2 i1/2 

y      =    (t/r)/[l2(l - v)\ 

N     =    N/(2y) 

p      =    (pr)/(Et) (15) 

The integration constants are obtained through substitution of Eq.  (4) into the boundary 

conditions.   For simply supported shells, these are 

at      x   =   L/2:   wQ   =   0    ,     w =   0 (16) 

and for clamped shells 

at      x   =   L/2:   w0   =   0     ,     w0x   =   0 (17) 

The following notations are introduced. 

cix  =   (aiL)/(2r) 

a0   =   (a9L)/(2r) 

(18) 



For simply supported shells the solution will be given by 

1—2   1/2   1 
(1 - N   ) sin a,  sinh a2 + N cos a, cosh 012 \ / 

" TT2.1/2  /      ,2 •  2        \1 (1 - N )        (cosh   012 - sin   oi1)\ 

A2   = 
 2 1/2   1 

(1 - N )       cosa1 cosh a2 - N sin a 1 sinh a „ 1/ 

..       T72.1/2 /       .2 .2 (1 - N  )        ( cosh   a 2 - sin -1)] (19) 

For clamped shells, 

A1   =  -2    (1-N)        cos a1 sinh a„ - (1 + N)        sin a,  cosh a. A  / 

[(1 + N)1//2 sinh 2a2 + (1 - N)1/2 sin 2a J 

A„  =  - 2 ,1/2 ._ _    (1 - N)        sin a    cosh a, 
T. 1/2 — 1/2 , 1    , 

+ (1 + N)        cos a.  sinh a „    / 

r — 1/2 — 1/2 
(1 + N)        sinh 2a2 + (1 - N)        sin 2a1 (20) 



Section 4 

BUCKLING EQUATIONS 

The equations needed for the solution of the buckling problem are obtained through 

substitution of Eqs. (10) into Eqs. (5) and (6).   From the equations so derived, the 

prebuckling equations can be subtracted and higher order terms in the infinitesimal 

incremental displacements omitted.   The equilibrium and compatibility equations may 

then be written in the form 

DVS + fl,xx/r + Nwl,xx - w0,xxfl,yy + < "N ' Etw0/r)wl,yy 
=   0 

(21) 

(l/Et)vVwl,xx/r + W0,xxwl,yy  =  ° 

The equations may be separated with respect to the space variables by use of the 

substitution 

fx = F(x)  sin (ny/r) 

(22) 
W]_ = W(x) sin (ny/r) 

The conditions of continuity in the circumferential direction will be satisfied if n , 

the number of circumferential waves, is an integer.   In substitution of Eqs. (22) into 

Eqs. (21), primes are used to denote differentiation with respect to x . 

D[WMM - 2(n/r)2W" + (n/r)4W]  + F"/r + NW" + (n/r)2w}jF 

- (n/r)2(vN - EtwQ/r)W  =  0 (23) 

(1/Et) [F"" - 2(n/r)2F" + (n/r)4F]   - W"/r - (n/r)2wj]W  =  0 

11 



These are linear differential equations with variable coefficients.   Besides the trivial 

solution W = F = 0 ,    solutions which satisfy the boundary conditions exist for partic- 

ular values of N .    The lowest of these values represents the critical load of the . 

cylinder. 

The boundary conditions are given in Eqs. (7), (8), and (9).   The conditions pertaining 

to w, f, N , or  N      are converted in terms of W   and  F   in an obvious way.   The 
'    '    x' xy 

conditions for  u  and  v  may be expressed in terms of W   and   F  by use of Eqs. (2), 

(3), (4), and (22). 

It is found that the condition v = 0  can be replaced by 

F" + v(n/r)2F   =   0 (24) 

and the condition  u = 0  by 

F™ - (2 + v) (n/r)2F» - EtW  =   0 (25) 

The classical formulation of the problem is obtained if the membrane solution 

wQ   =   (!/Nr)/(Et) +  (pr2)/(Et) (26) 

is substituted in Eqs.  (23). 

The simplified equations so obtained for the case of hydrostatic pressure were solved 

by Sobel in Ref. 7 for the eight sets of boundary conditions considered here.   Cor- 

responding solutions presented here for the case of axial compression were obtained 

by use of Sobel's computer program.   These solutions are compared with solutions 

of Eqs.  (23). 

12 



Section 5 

METHOD OF SOLUTION 

Solutions to the equations governing the buckling problem are obtained through use of 

the finite difference method.   The equations are approximately satisfied at a number of 

discrete points along the shell length in the interval   0 < x <  L/2 .     In order that the 

eight boundary conditions may be defined, four additional points, two at each end, are 

located outside the interval.   The points are chosen to be equally spaced, and the dis- 

tance between adjacent points is denoted by  h .     The total number of points, hence, is 

M   =   L/(2h) + 5 

The axial coordinates of the points are given by 

x      = h(m - 3)    ;    m  =   l,2,3,...,M 
m v ' 

The values of the stress function and the lateral displacement at the point with the 

axial coordinate  x      are referred to as   Fm   and \V     .     At each of the points, m mm 
F      and W      are unknown and hence the total number of unknowns is m m 

2M  =  (L/h + 10) 

At each of the interior points  (m = 3 , 4 ..., M - 2)    the compatibility and equilibrium 

equations are formulated in terms of finite differences, yielding   2[L/( 2h) + 1 ] = 

L/h + 2   equations.   The boundary conditions, written in terms of finite differences, 

provide eight equations for a total of  ( L/h + 10) . 

13 



The following difference approximations are used: 

y[ = iy1+i-yi-iiA2h) 

yf = [yi+1-
2yi + yi_i]/h2 

y{" = [i/2y1+2-y1+i 
+ yi-i- ^W^3 

(27) 

In order that nonzero elements in the coefficient matrix will be concentrated around 

the main diagonal, the first four equations are the boundary conditions at midlength, 

and the last four the boundary conditions at the edge.    Furthermore, of the remaining 

equations, the odd numbered are compatibility equations and the even numbered are 

equilibrium equations.    The unknowns are denoted  y. ,    such that 

y0     = w J2m m 

v =   F J2m-1 m 

where 

1   <   m  <   L/(2h) + 5 (28) 

It follows from Eqs.  (27) and (28) that 

Fm  =   ^m+l-^m-S^211) 

Fl   =   [y,mJ., - 2y9TT1, + y„j/h2 
m        L-y2m+l        J2m-1      J2m-3 

Fm   =   tl/2y2m+3 " y2m+l 
+ y2m-3 ~  l/2y2m-5]/h 

3 

Fm'   =   [y2m+3  " 4y2m+l 
+ 6y2m-l " 4y2m-3 + y2m-5]/h' 

14 



Wm  =   [y2m+2-y2m-2l/(2h) 

Wm  =   [y2m+2-2y2m + y2m-2]/h2 

Wm   =   Il/2y2m+4 " y2m+2 + y2m-2 " l/2y2m-4]
/h3 

4 
W""  =  [y0wi4. - 4y9tYi+9 + ey       - 4y._2 + y2m_4]A (29) 

m W4 " *y2m+2 T ^2m      ^2m-2      '2m-4 

By use of Eqs. (29), the boundary conditions at midlength may be written 

Equation 1    ; Fg   =  (y? - y3)/2h = 0 

2 ;     FJ" = (i/2y9 - y7 + y3 - 1/2 y^A3 = 0 

3 ;        W3   =   (yg - y4)/2h = 0 

4 ;    w>" = (i/2y10 - y8 + y4 - i/2y2)A
3 = 0 (30) 

The compatibility conditions provide the equations numbered 5,7,9,..., 2M-5 . 

For   m = 3,4,5,..., M-2 , 

<l/Et)  [<y2m+3 " 4y2m+l + 6y2m-l ~ 4y2m-3 + y2m-5 ^ 

" 2<n/r>2 <y2m+l " 2y2m-l + y2m-3)/h' + (n/r)4y2m-l) 

" (^) (y2m+2 " 2y2m + y2m-2>/h2 " ^n/r)2 (W0>   y2m   =  ° 2m+2        J2m      J2m-2 m 

(31) 

Similarly the equations numbered 4,6,8,..., 2M-4 are obtained from equilibrium 

conditions. 

15 



For   m = 3,4,5,... , M-2 , 

D[<y2m+4 " 4y2m+2 + 6y2m " 4y2m-2 + y2m-4]/^ " 2(n/r)2 (y2m+2 " 2y2m 

+ y2m+2)/h2 + (n/r)4y2ml  + <l/r) <y2m+l " 2y2m-l + y2m-3 ^ + N<y2m+2 

" 2y2m + y2m-2)/h2 + < ^ >'< w5 ^m-l " ^ 
,N-Et(w0)      y2m   =   0 

mJ 

(32) 

3 

The last four boundary conditions in terms of finite differences are 

Equation 2M-3: W   =   0   ;   y2M_4   =   0 

Equation 2M-2: W x   =   °   ;   ^2M-2  ~ y2M-6)/2h = ° 

or        WjXx   =   0   ;   (y2M_2  -  2y2M_4 + y2M_6 )A2   =   0 

Equation 2M-1: u   =   0   ;   ( 1/2y^^ - y2M_3 + y2M_?  -   l/2y2M_9)/h: 

- (2-f.,)(n/r)2(y2M_3 -y2M_7)/(2h) 

" Et(y2M-2-y2M-6)/<2h)   =   ° 

Nx   =   °   ;   y2M-5   =   ° 

Equation 2M: v   -   0   ;   (y2M_3  - 2y2M_5 + y2M_? )/(h2) + ^(n/r)2y2M_5 = 0 

°r Nxy   =   °   ;   (y2M-3-y2M-7)/2h = ° (33) 

Once the boundary conditions have been chosen, Eqs. (30) through (33) define a linear 

homogeneous equation system of the order 2M.   This equation system can have nontrivial 

16 



solutions only if the determinant of the coefficient matrix equals zero.   The lowest 

value of N  for which the determinant is zero represents the critical load of the cylinder. 

This value is found through computation of the determinant for a series of values of the 

load such that the solution can be found graphically. 

For the computations, an IBM-7094 digital computer was used.   In programming, 

advantage was taken of the fact that elements sufficiently far off the diagonal were 

zero.    Furthermore, the computer program provided a possibility to alternately 

reduce the matrix and compute new coefficients.   In this way the available storage 

space did not limit the number of points that could be used.   Therefore, the limit was 

determined by round-off errors, and a double precision procedure was used. 

All numerical results were obtained for a value of Poisson's ratio equal to 0. 3. 

17 



Section 6 

RESULTS 

The accuracy of numerical results, of course, depends on the use of a sufficient 

number of points in the finite difference scheme.   On the other hand, the computer 

time increases rapidly with an increasing number of points.   The convergence of 

the method, therefore, was explored through calculation of critical loads for fixed 

shell parameters and a successively increasing number of points.   Some of the 

results so obtained are shown in Table 1.   By use of these exploratory calculations 

it was possible to establish, as a function of the parameter Z, the number of points 

needed for 1/2 percent, or better, accuracy in the final results. 

Computed critical values of the axial load for the case of zero lateral pressure are 

shown in Table 2.    For comparison, corresponding results were also obtained by use 

of the membrane prebuckling solution.   It was found that with boundary conditions 

corresponding to cases S3 and S4 (W      = 0 ,   N      - 0) these results differ very 

little from the results in Table 2.   In the other six cases the critical load with 

membrane prebuckling solution, within the parameter range considered, is equal 

to or insignificantly higher than the classical buckling load for simply supported 

cylinders   (N = 1.0) . 

It appears from Table 2 that, with the exception of very short shells (Z - 50) , the 

critical load is practically independent of the parameters  r/t  and  L/r   in all cases. 

In contrast to expectations, lower values of the critical load are in some cases found 

for the very short shells.   Therefore, the influence of the shell length on the critical 

load was studied in more detail.    The critical load versus the parameter   L/r ,   for 

a cylinder with  r/t = 100  and with boundary conditions corresponding to case C2, 

is shown in Fig. 1.   Here the number of circumferential waves was held constant 

(n = 8 ) .   For long shells the critical load is independent of shell length, and for very 

short shells the critical load is, as expected, monotonically increasing with decreasing 

shell length.   In the intermediate range an oscillatory behavior is displayed.   It may 

19 



Table 1 

CONVERGENCE OF CRITICAL LOAD 

(a)   r/t  =   102   ,    L/r  =  0.7   ,   p  =  0 

  

L/(2h) NCR 
Case S3 Case S4 

50 0.5150 0.5100 

100 .5136 .5085 

150 .5133 .5083 

200 .5132 .5082 

250 .5132 .5082 

300 .5132 .5082 

(b)   r/t   =   1(T   ,    L/r   =  3.2 p   =   0 

— 
L/(2h) NCR 

Case S3 Case S4 

100 0.5153 0.5155 

200 .5118 .5114 

300 .5109 .5108 

400 .5106 .5105 

500 .5104 .5103 

600 .5103 .5103 

700 .5102 .5102 

800 .5102 .5102 

20 



Table 1 (Cont.) 

(c)   r/t  =   104   ,    L/r   =  0.32 

— 

L/(2h) 
NCR 

Case S3 Case S4 

120 0.5054 0.5038 

240 .5025 .5006 

360 .5021 .5004 

480 .5019 .5003 

600 .5019 .5003 

720 .5019 .5003 

(d)  r/t  =   10,    L/r  =  3.2   ,   p  =  0.232 

Case S3 

L/(2h) NCR 

120 0.679 

240 .676 

360 .6750 

480 .6745 

600 .6745 

720 .6745 

(e)   r/t 10' L/r   =   0.7   ,   p   =   0 

L/(2h) 
NCR 

Case Cl Case C3 

60 

120 

180 

240 

300 

0.91015 

.91019 

.91020 

.91021 

.91021 

0.90997 

.91002 

.91003 

.91003 

.91003 

21 
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be seen that the deep minimum, which is reached just before the critical load increases 

monotonously, is very close to   L/r = 0.7. 

A similar variation of the critical load with  L/r  was found for the cases S3 and S4. 

In Fig. 2a the critical load is shown versus   L/r  for case S3.   It is seen that in this 

case the general behavior does not change when the influence of lateral restraint in the 

prebuckling analysis is neglected.   For relatively long cylinders the curve with mem- 

brane prebuckling solution is slightly below the rigorous solution.  However, for very- 

short cylinders this difference increases, as may be expected.   In Fig. 2b the length 

dependence is shown for a cylinder with boundary conditions corresponding to case S4. 

In both these cases the curves are valid for a fixed number of waves   (n = 2) . 

Critical values of the external pressure with zero axial load were also computed for 

the eight different sets of boundary conditions.   In this case the results agree with 

those reported in Ref. 7, except for very short cylinders.   The slight discrepancy for 

short shells was observed for simply supported shells also in Ref. 8. 

Critical loads under combined loading are shown in Figs. 3, 4, 5, and 6.   In cases SI 

and S2 (Fig. 3) the value of  r/t  has practically no influence on critical combinations 

of the axial stress and external pressure parameters, within the range of geometrical 

parameters under consideration. 

The analysis with the membrane prebuckling solution indicates that the difference in 

critical loads for cases S3 and S4 is negligible for all values of the pressure param- 

eter.   However, in the presence of internal pressure the rigorous solution gives dif- 

ferent results.   This is shown by the interaction curves in Figs. 4 and 5.   Here the 

number of waves corresponding to minimum critical load generally is two, but, for 

higher values of the pressure, in case S3, this minimum occasionally occurs at a 

larger number of waves. 

In case S3 the curves show that for most combinations of geometrical parameters 

there exists a range of the pressure parameter within which three solutions are 

obtained.   Of course, when the axial load on the shell is increased under constant 

internal pressure,only the lowest of these solutions is meaningful. 

For clamped cylinders, it was found again that the parameter  r/t  has no influence 

on critical combinations of the axial stress and pressure parameters.   It was found 

also that tangential restraint at the edge does not affect the critical load.   Interaction 

curves for clamped cylinders are shown in Fig. 6. 
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Fig. 2 a Influence of Shell Length for Simply Supported Cylinders 
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Section 7 

CONCLUSIONS 

The results obtained here are in agreement with the results of the example considered 

by Fischer, and also, over most of the parameter ranges, in reasonably close agree- 

ment with the results presented by Stein.   However, for very thin and long cylinders 

the difference between present results and those presented by Stein is appreciable. 

Therefore, a computer program based on Eq. (15) of Ref. 2 was derived.   It was found 

that if a sufficiently fine mesh size was used, the numerical results were in good 

agreement with the present results throughout the parameter range. 

The results for simply supported cylinders with the edge free to move in the tangential 

direction show a drastic reduction of the critical load in comparison with the classical 

value.   For relatively long, nonpressurized cylinders, this reduction is practically 

independent of whether an accurate or a membrane prebuckling solution is used.   For 

pressurized cylinders and for very short cylinders, the rigorous analysis gives higher 

values of the critical load. 

For simply supported cylinders in the case of zero tangential edge displacement, and 

for clamped cylinders, use of the rigorous analysis leads to a reduction of the critical 

load.   This reduction is rather moderate in comparison with the discrepancy between 

theory and tests.   It appears that these boundary conditions generally are applicable 

in experiments, and therefore the edge effects studied here cannot alone explain the 

discrepancy between theory and tests.   A final solution of this problem will probably 

have to include effects of initial geometric inaccuracies. 

The results for cylinders with edges free in the tangential direction, first obtained by 

Stein, are somewhat related to the results by Nachbar and Hoff in Ref. 9.   In Ref. 9 

the cylinder edge was considered to be free in the lateral direction, and also in this 

case the critical load was drastically reduced.   Although neither of these conditions is 

realized in experimental analysis, they are still interesting in that it is feasible that 

in practical applications elastic restraint at the edges may be rather weak. 
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